Characterization of neural interaction during learning and adaptation from spike-train data.

نویسندگان

  • Liqiang Zhu
  • Ying-Cheng Lai
  • Frank C Hoppensteadt
  • Jiping He
چکیده

A basic task in understanding the neural mechanism of learning and adaptation is to detect and characterize neural interactions and their changes in response to new experiences. Recent experimental work has indicated that neural interactions in the primary motor cortex of the monkey brain tend to change their preferred directions during adaptation to an external force field. To quantify such changes, it is necessary to develop computational methodology for data analysis. Given that typical experimental data consist of spike trains recorded from individual neurons, probing the strength of neural interactions and their changes is extremely challenging. We recently reported in a brief communication [Zhu et al., Neural Computations 15, 2359 (2003)] a general procedure to detect and quantify the causal interactions among neurons, which is based on the method of directed transfer function derived from a class of multivariate, linear stochastic models. The procedure was applied to spike trains from neurons in the primary motor cortex of the monkey brain during adaptation, where monkeys were trained to learn a new skill by moving their arms to reach a target under external perturbations. Our computation and analysis indicated that the adaptation tends to alter the connection topology of the underlying neural network, yet the average interaction strength in the network is approximately conserved before and after the adaptation. The present paper gives a detailed account of this procedure and its applicability to spike-train data in terms of the hypotheses, theory, computational methods, control test, and extensive analysis of experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism in Spiking Neural Networks

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic...

متن کامل

Time Divergence-Convergence Learning Scheme in Multi-Layer Dynamic Synapse Neural Networks

A new learning scheme called time divergence-convergence – TDC – is proposed for two-layer dynamic synapse neural networks – DSNN. DSNN is an artificial neural network model, in which the synaptic transmission is modeled by a dynamic process and the information between neurons are transmitted through spike timing. In TDC, the intra-layer neurons of a DSNN are trained to map input spike trains t...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Measuring spike train distance from multichannel spike trains data simulated by coupled escape rate model

Estimating the population activity patterns between two or more spike trains is a fundamental problem in studying neural coding in computational neuroscience. In recent years, there are many different methods proposed to build a framework to deal with these problems by using spike train metric. Here we suggest a kernel method for multichannel spike trains that can provide an opportunity to meas...

متن کامل

بررسی عملکرد شبکه عصبی مصنوعی در پیش‌بینی جریان رودخانه (مطالعه موردی: حوضه قره آغاج استان فارس)

In order to river flow forecasting in catchments area in during many years are invented different methods that their efficiency is confirmed. One of these simulation models is neural network that it can draw the existence of truth together with considerable attention. In this research in order to Discharge simulation is investigated meteorological parameters effects on Ghare Aghaj river flow. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences and engineering : MBE

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2005